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LETTER TO THE EDITOR 

Analytic properties of thermodynamic functions at 
first-order phase transitions 

V Privman and L S Schulman 
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel 

Received 27 January 1982 

Abstract. We develop a method of analytic continuation at first-order phase transitions 
and apply it to the d = 2 Ising model in an external field. The method employs a function 
built of transfer matrix eigenvalues, which provides rapidly convergent approximations 
to the stable free energy f and its derivatives for all HPO. We confirm recent series 
analysis results on the existence of an essential singularity at H = 0. There is also indication 
of a spinodal line, and H,( T) < 0 is estimated in the range 0 < T s 0.6Tc. 

The theory of metastability at first-order phase transitions is an open area in statistical 
physics. Equilibrium states are described by a well established ensemble theory. 
However, no such general description of metastable states exists. Attempts to develop 
a more rigorous theory of metastability (see Penrose and Lebowitz 1979) are confined 
to relatively simple models. In this Letter we suggest a new method of approximate 
analytic continuation beyond the coexistence curve, using the eigenvalues of the 
transfer matrix (TM), and apply it to the d = 2 king model (a more detailed presentation 
will be given elsewhere (Privman and Schulman 1982)). 

The droplet model (Fisher 1967, Langer 1967) predicts an essential singularity at 
the coexistence curve. The nature of this singularity has recently been studied by 
several methods in the d = 2 Ising model using TM (Newman and Schulman 1977, 
McCraw and Schulman 1978), renormalisation group (Klein et a1 1976) and series 
analysis methods. Baker and Kim (1980) resummed the low-temperature series and 
derived an expansion of m(H) (magnetisation) in powers of H. The series is apparently 
divergent in a way consistent with droplet model predictions. Evidence for the 
singularity at H = 0 was also found in related series analyses (Baxter and Enting 1979, 
Enting and Baxter 1980). 

The foregoing studies find no indication of a spinodal line. Such a spinodal 
singularity at which ,y - ( H  -Hsp( T))-“,  0 < cr C 1, has been conjectured on the basis 
of mean field (crMF = $) and other phenomenological models (Klein 1981). Existence 
of a spinodal, its position and properties are a long-standing open problem (Domb 
1976). Let us suggest the following heuristic observation. The divergence of x would 
imply a divergent correlation length 6, and in particular at H near Hsp 6 would exceed 
the radius R of the ‘critical droplet’. At these H-before reaching Hsp-we expect 
fluctuations to destroy the metastable phase. Therefore we anticipate a smoothed 
second-order phase transition (as if the system were in a finite volume - RhEH,,(=)) .  
For 6 - R there is therefore an enhancement of the droplet decay mechanism which 
may be interpreted as ‘the limit of metastability’. Detailed dynamical arguments 
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(Langer 1974) suggest a similar picture. Note however that when the spinodal region 
is approached, the analytically continued free energy (which we consider below) ceases 
to describe the system (‘static’ thermodynamic functions cannot be precisely defined 
(Langer 1974)). It is apparently the case that in the analysis of finite power series 
the spinodal may nevertheless manifest itself as a bona fide singularity. Such a situation 
was probably observed by Gaunt and Baker (1970) and by Ditzian and Kadanoff 
(1979). In our calculations evidence is found for both the essential singularity and 
the spinodal. 

Consider the d = 2 Ising model on an N x M  lattice with periodic boundary 
conditions at fixed T C T,. The energy of the configuration {a} of the spins aii = *1 is 

E{u)=- aij (ai j+l+ai+l j+H),  i + N = i, i + M =i. 

The 2N X 2N TM is defined between two column configurations a and a’, 

i j  

(TM),.=(TM),.,=~~~(- P N  (ao i+I+a~a~+l  + 2 u p :  + ~ q + ~ a : )  
2 i = l  

where i + N = i and /3 = 1/T. The free energy per spin of the N x 00 ‘strip’ ( M  + a)) 
is 

f?’ = -(/3N)-’ log A iN), 
where A;” are the eigenvalues of the TM (A:” >A:” 2 A k N )  2.. .). A:”(H) is a 
branch of an analytic function whose other branches are AI” and whose eigenvectors 
belong to the completely symmetric representation of the group of symmetry oper- 
ations of the TM. Henceforth we denote by TM the restriction to the invariant sub- 
space, by A \” > A $” > A $” >. . . the corresponding eigenvalues, and f iN) E 
- (1 /PN)  log A!N) .  The infinite system stable free energy f =  limN+,fi” consists of 
two branches f*  (figure l(a)) with a cusp at H=O (presumably the metastable 

continuations in figure l(a) have non-zero imaginary parts). The derivative of f 
( - m * ( H ) )  has a jump at H = 0 (twice the spontaneous magnetisation m.) and the 
next derivative ( - x )  has a delta function contribution at H = 0. Higher derivatives 
of f have derivatives of the delta function at H = 0. This behaviour is approximated 
by f l  and its derivatives D’f?’, where D = a/aH. Let us study this property in more 
detail. The functions fi”, fi”, hN) are represented schematically in figure l (b) .  At 
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H=O f iN’  and fi” are asymptotically degenerate with gap size A”’= 
(fT’(0) -fiN’(0))/2xe- C(T’N/N.  For the Ising model this is known from Onsager 
(1944); in general, asymptotic degeneracy as a mechanism for phase transitions has 
been emphasised by Kac (1966). For H >> constant x A(N’, fy’  behaves like f + ;  however 
in the ‘mixing’ region, IHI = O(A”’), its magnetisation (-0fi”’) changes from positive 
to negative. A continuation with positive magnetisation is along the portion A (figure 
l(b)) of fp’. At some HL < 0 (figure l(b)) f iN’ encounters higher branches f?’, f ! ’ ,  
. . . . For sufficiently low N these higher encounters are separate near-degeneracies 
(this can be shown in the limit T+O, N fixed), and one may continue along the 
portion B of fj”, etc. Such a procedure was suggested by Newman and Schulman 
(1977) and used by McCraw and Schulman (1978) to obtain numerical estimates of 
the analytic continuation of f+. However, this method runs into difficulty because 
branch points of the TM eigenvalues do not seem to approach the real H<O axis in 
the limit N+m,  T fixed. Although the TM provides an analytic continuation, its 
domain is probably not maximal, and while it presumably gives information about 
the maximally continued object via dispersion relations (see Schulman et a1 1978), 
the continuation apparently does not include the H < 0 real axis. The central near- 
degeneracy at H=O is however well defined even for large N and governs the 
behaviour of fi” and fi” for [HI < IHLI. We assume the following behaviour of H h  
for large N: H L  - -constant/N. This assumption is supported by the exact solution 
at H = 0 (which gives f3(0) -f2(0) - l/N), and by the observation that the ‘interaction’ 
of hN’ and higher branches is a typical ‘fluctuation’ (-l/N) effect (in the T + 0, fixed 
N limit H L  = - 2 / N ) .  Although f iN’  + f +  = f for H z 0 we know that the convergence 
in the region (HI = O(A”’) is poor; in particular, D fl does not converge to Dkf+ 
at H = 0. For this reason we define a pair of functions 

k N )  

( N ) 2  1/2 f Y w )  = t[fi”’(H)+f2”(Hjlf{a[fiN)(H)-fZN’(H)l2-A } . (1)  
By definition of A(N’ the argument of the square root is proportional to H2 near zero 
and the square root is therefore a single-valued function which is chosen to be 
proportional to -H. Thus on the real H axis we obtain two intersecting branches 
(figure l(c)) with 

f!’ = f ( f i N ’  +f;”)rsgn(H)l[a(fiN’ -A(N’2]1’21. 

It turns out that for H z 0 f?’ is a better approximation tof+ than f;’ in the following 
two senses: (1) Dkf?’+Dkf+ for H+0+, and (2) numerical convergence of the 
derivatives is much better for positive H away from 0 as well. The motivation for 
the definition off:’ is simple. ti”’ and f?’ have a near crossing, a rapid interchange 
of the form of their eigenvectors and presumably a pair of branch points at H = fiA”’ 
where they are exactly degenerate (Newman and Schulman 1977). Moreover, on the 
scale of A(N’ this crossing is distant from any other, so that if one thinks of f?’ and 
AN’ as a two-level system, it is reasonable to expect to be able to parametrise them 
as eigenvalues of a matrix of the form 

where the functions f?’(H) =f-”(-H) break the H o  -H symmetry similar to 
spontaneous breakdown in f*. Moreover, if outside the crossing region fi”- 
f iN’(0)-m,lHI+O(H2),  then we expect the functions fp’ to behave like f:’- 
f?’(O)*m,H+O(H*). By requiring the eigenvalues of M to be fi” and f2N’ we 
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obtain equation (1). Let us consider the way in which f+”’ +f+ for H 3 0 .  For the 
difference lDkffi”’ -Dkf+l ( H  20) there are two contributions. First, for [HI = O(A”’) 
0°F’ approximates the - ~ ~ I , D ~ - ~ S ( H )  term in Dkf  and performs violent fluctu- 

Second, finite-size effects occur because one is still using only an N x 00 lattice. Fisher 
(1971) has argued that with periodic boundary conditions these effects should be 
O(e-”‘) so that we can expect good convergence for Dkf?’. We can establish the 
following properties of f?’. 

(1) f?’(H) does not have the branch points associated with thefi” -hN) crossing; 
therefore assuming fF’ has its crossing with f?) at a distance of order 1/N, f+”(H) 
will be analytic in a circle with radius of order 1/N. 

(2) Using ( l ) ,  all derivatives Dkf?’ at 0 approach the corresponding right deriva- 
tives Dkf(H + 0’) = Dkf+(O, of the exact free energy for N + 00. 

For proof see Privman and Schulman (1982), but we here mention that to show 
Dkf?’(0)+Dkf+(O) the following additional property is needed (as a sufficient con- 
dition): 

ations of magnitude -[A”’]“-k’ - N ( k - l ) *  , using f?’ eliminates this problem. 

lim [ ~ ~ f i “ ’ ( l / ~ ~ + ~ ) - ~ ~ f + ( l / ~ ~ + ~ ) ] =  0. 
N-as 

This condition reflects the shrinking of the ‘mixing’ region faster than any power of 
1/N (in practice A”’-e-CN/N). Note that the modified free energy f?’ does not 
provide analytic continuation of f +  to H < 0 .  As mentioned above, f!’ provides 
rapidly convergent approximations to all derivatives of f +  for H 3 0. Calculating a 
finite number of derivatives at some Ho*O, we obtain a truncated power series for 
the magnetisation 

k + l  N) where the c k  are approximated by clfj’ = --(l /k!)(D f+ ) H = H o o 6 k 0 .  The series 
( 2 ) ,  obtained from the TM, may be used for analytic continuation by conventional 
series analysis methods. 

Consider first the case Ho = 0. We calculated A :” and Ab” numerically to about 
30 figure accuracy (to avoid round-off errors) for N = 3, 4, . . . , 9 at several closely 
spaced H values. An interpolating polynomial was used to estimate the first 10 
derivatives off?’ ( fc”(H = 0), cb”, . . . , cb”). For fixed T this takes about 1.5 hours 
on the IBM/370 Technion computer. The convergence (with N) is faster for lower 
temperatures and lower derivatives. With N s 9, accurate values of all co, . . . , c9 are 
obtained in the range 

O<u=s0.3uc 

where U = e-4’T is the ‘low-temperature’ variable (U, = 3 -81’2). The temperature 
U = O.lu, is interesting because the coefficients c1, . . , , ~ 2 4  were calculated by Baker 
and Kim (1980) using numerical resummation of the low-temperature series. In table 
1 we list f?’(O), cbN), . . . , cb” for N = 7, 8, 9. Our estimates of the c,, (table 1) are 
in agreement with the values of Baker and Kim (1980). In figure 2(a)  we plot the 
ratios cn/cn- ,  as functions of n for various U values. The apparent linear asymptotic 
behaviour (figure 2) implies that the radius of convergence of the power series is zero. 
We checked this linear behaviour for 17 different U values in the range 0.03 G u/ucG 
0.30. The nature of the essential singularity at H = 0, as implied by the linear cn /cn- l  
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Figure 2. ( a )  Plot of c,/c,-, as a function of n for U = 0 . 0 5 ~ ~  (full circles), U = 0 . 1 ~ ~  
(crosses) and U =O.lSu,  (plus symbols). (6) Plot of c ! , ~ ) / c ! , ’ ) ~  for U =0.3uc ,  N = 3, 5,  7, 
9. 

behaviour, was discussed in detail by Baker and Kim (1980). Lowe and Wallace 
(1980) showed that it is consistent with field-theoretic droplet model predictions. The 
approach to straight line behaviour may be followed visually for U = 0.3uC, since the 
convergence is relatively slow in this case. In figure 2(6) we plot the ratios C~”/C‘,“-)~ 

for N = 3, 5 ,  7, 9. The singularity of f+ at H = 0 is built up when the singularities of 
f+”(H) accumulate along the negative H axis; the nearest ones are at IHI oc 1/N, so 
that the radius of convergence vanishes like 1/N for large N. 

Let us now consider the series (2) for non-zero HO > 0. The motivation is that for 
Ho = 0 the coefficients c, are dominated by the factorially growing contribution from 
the singularity at zero. To study the structure of m + ( H )  for H < 0, it is better to use 
some finite Ho>O. The coefficients clfv’ are calculated using the same method. 
Convergence (with N)  improves when Ho increases; however, longer computer times 
are needed because Ho > 0 is not a symmetry point. Most results quoted below were 
obtained with N 6 8  (some with N ~ 9 ) .  For a fixed temperature U = O.lu,, we 
performed Pad6 analysis of the series for x ’ / x ;  in a short power series we expect an 
apparent singularity at H,,(T) with the leading contribution of the form x ’ / x  - 
( - u ) / ( H - H , , ) .  For Ho = 0, 0.05, 0.10, 0.15, 0.20 the majority of poles and zeros 
of different Pad6 approximants lie on the negative H axis, suggesting a branch cut 
along the H < 0 axis. This trend nearly disappears for HO = 0.30, 0.40, presumably 
because a short power series becomes insensitive to a weak singularity at H = 0. 
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In the cases Ho=0.05,  0.10, 0.15, we clearly observed one stable pole at H,,= 
-0.415 f 0.015, whose residues give U = 0.07 f 0.02. Identification of this pole as a 
spinodal must be considered with great caution. The spinodal (if it exists) is masked 
by the essential singularity at H = 0, and the branch cut makes the applicability of the 
Pad6 method rather questionable and opens the door for systematic errors. The 
apparently stable pole that we observed may also be an artifact of PadC analysis of 
series as short as those we used. Support for the identification of this apparent 
singularity as evidence of a spinodal comes from its reasonable temperature depen- 
dence (see below). We sought confirming evidence for a singularity from TM eigen- 
values, looking for some dramatic change in gap sue (for a gap at approximately fixed 
negative H and varying T). None was found. Note however, that the value of the 
apparent critical exponent U - 0.07 implies that the spinodal is an extremely weak 
effect in the d = 2 king model. 

For fixed Ho=O.l we analysed x ' / x  series for u/uc=0.02, 0.04, . . . , 0.30. The 
values of U from different Pad6 approximants are spread over the range 0.04 d U d 
0.09, but individual approximants vary slowly with temperature. The Hsp(u) values 
are summarised in figure 3. Our values are compared with the scaling form of H,,(T) 

f 

b 

I r l r l l l l i l l l l l l  
002 010 0 20 030 

U I U ,  

Flgwc 3. H.,, as a fundion of u=exp(-4/T) in the temperature range U ~ 0 . 3 ~ ~ .  The 
scaling form found by Gaunt and Baker (1970) defines the range between the curves a 
and b. 

for T +  T i .  That form gives HSp between the curves a and b in figure 3, namely 
tanh@Hsp)-(-0.39~0.20)(1 - T/Tc)'5'8. These values were found by Gaunt and 
Baker (1970) using the high-temperature series. Our HIP( T) apparently approaches 
the scaling form (note that U 6 0 . 3 ~ ~  corresponds to T ~ 0 . 6 7 ' ~ ) .  In the mean field 
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case HSp( T) has a finite limit when T + 0. We studied the low-temperature limit in 
detail (see Privman and Schulman 1982) and found 

Hsp( T = 0) = -0.82 f 0.07. 

In summary, we have suggested a new method of approximate analytic continuation 
at first-order phase transitions. Our results for the d = 2 Ising model confirm the 
existence of an essential singularity at H = 0 and provide an indication of a spinodal 
region in the low-temperature range. 
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